| [1] DONG C, LOY C C, HE K M, et al. Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[2] ANWAR S, KHAN S, BARNES N.A Deep Journey into Super-Re-solution: A Survey. ACM Computing Surveys, 2020, 53(3). DOI: 10.1145/339046.
[3] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[4] WANG X H, WANG Q, ZHAO Y Z, et al. Lightweight Single Image Super-Resolution Network with Attentive Auxiliary Feature Learning // Proc of the 15th Asian Conference on Computer Vision. Berlin, Germany: Springer, 2020: 268-285.
[5] WOO S, PARK J, LEE J, et al. CBAM: Convolutional Block Attention Module // Proc of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
[6] HUI Z, GAO X B, WANG X M.Lightweight Image Super-Resolution with Feature Enhancement Residual Network. Neurocomputing, 2020, 404: 50-60.
[7] MA H L, CHU X X, ZHANG B.Accurate and Efficient Single Image Super-Resolution with Matrix Channel Attention Network // Proc of the 15th Asian Conference on Computer Vision. Berlin, Germany: Springer, 2020: 20-35.
[8] 施举鹏,李静,陈琰,等.DFAN:一种基于深度反馈注意力网络的图像超分辨率方法.小型微型计算机系统, 2021, 42(6): 1206-1212.
(SHI J P, LI J, CHEN Y, et al. DFAN: A Deep Feedback Attention Network for Image Super-Resolution. Journal of Chinese Computer Systems, 2021, 42(6): 1206-1212.)
[9] HANG Y C, LIAO Q M, YANG W M, et al. Attention Cube Network for Image Restoration // Proc of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 2562-2570.
[10] 李方玗,贾晓芬,赵佰亭,等.高效多注意力特征融合的图像超分辨率重建算法.小型微型计算机系统, 2023, 44(5): 1023-1028.
(LI F Y, JIA X F, ZHAO B T, et al. Efficient Multi-attention Feature Fusion for Image Super-Resolution Reconstruction Algorithms. Journal of Chinese Computer Systems, 2023, 44(5): 1023-1028.)
[11] 李千,赵逢禹.融合多路径与混合注意力的遥感图像超分辨率重建.小型微型计算机系统, 2023, 44(7): 1508-1513.
(LI Q, ZHAO F Y.Super-Resolution of Remote Sensing Images Based on Multi-path and Mixed Attention. Journal of Chinese Computer Systems, 2023, 44(7): 1508-1513.)
[12] YAN Y T, XU X, CHEN W H, et al. Lightweight Attended Multi-scale Residual Network for Single Image Super-Resolution. IEEE Access, 2021, 9: 52202-52212.
[13] YU J H, FAN Y C, YANG J C, et al. Wide Activation for Efficient and Accurate Image Super-Resolution[C/OL].[2025-07-25]. https://arxiv.org/pdf/1808.08718.
[14] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 779-788.
[15] AGUSTSSON E, TIMOFTE R.NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 1122-1131.
[16] DONG C, LOY C C, TANG X O.Accelerating the Super-Resolution Convolutional Neural Network // Proc of the 14th European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 391-407.
[17] WANG Z W, LIU D, YANG J C, et al. Deep Networks for Image Super-Resolution with Sparse Prior // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 370-378.
[18] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5835-5843.
[19] SHOCHER A, COHEN N, IRANI M.Zero-Shot Super-Resolution Using Deep Internal Learning // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 3118-3126.
[20] KIM J, LEE J K, LEE K M.Deeply-Recursive Convolutional Network for Image Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1637-1645.
[21] TAI Y, YANG J, LIU X M.Image Super-Resolution via Deep Recursive Residual Network // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 2790-2798.
[22] MAO X J, SHEN C H, YANG Y B. Image Restoration Using very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections // Proc of the 30th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2016: 2810-2818.
[23] KIM J, LEE J K, LEE K M.Accurate Image Super-Resolution Using Very Deep Convolutional Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1646-1654.
[24] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[25] TAI Y, YANG J, LIU X M, et al. MemNet: A Persistent Memory Network for Image Restoration // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 4549-4557.
[26] HUI Z, WANG X M, GAO X B.Fast and Accurate Single Image Super-Resolution via Information Distillation Network // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 723-731.
[27] REN H Y, EL-KHAMY M, LEE J.Image Super Resolution Based on Fusing Multiple Convolution Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2017: 1050-1057.
[28] CHOI J, KIM M.A Deep Convolutional Neural Network with Selection Units for Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2017: 1150-1156.
[29] AHN N, KANG B, SOHN K. Fast, Accurate, Lightweight Super-Resolution with Cascading Residual Network // Proc of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 256-272.
[30] KIM J, CHOI J, CHEON M, et al. MAMNet: Multi-path Adaptive Modulation Network for Image Super-Resolution. Neurocomputing, 2020, 402: 38-49.
[31] CHU X X, ZHANG B, MA H L, et al. Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search // Proc of the 25th International Conference on Pattern Recognition. Washington, USA: IEEE, 2021: 59-64.
[32] LI Z, WANG C F, SHI J.Lightweight Image Super-Resolution with Adaptive Weighted Learning Network. Computer Vision and Image Understanding, 2021, 211. DOI: 10.1016/j.cviu.2021.103254.
[33] LI Z, YANG J L, LIU Z, et al. Feedback Network for Image Super-Resolution // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2019: 3862-3871.
[34] HARIS M, SHAKHNAROVICH G, UKITA N.Deep Back-Projection Networks for Super-Resolution // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 1664-1673.
[35] LI J C, FANG F M, MEI K F, et al. Multi-scale Residual Network for Image Super-Resolution // Proc of the 15th European Confe-rence on Computer Vision. Berlin, Germany: Springer, 2018: 527-542. |